Sample Question Paper <u>CLASS: XII</u> Session: 2021-22 Mathematics (Code-041) Term - 2

Maximum Marks: 40

Time Allowed: 2 hours

General Instructions:

- 1. This question paper contains **three sections A, B and C**. Each part is compulsory.
- 2. Section A has 6 short answer type (SA1) questions of 2 marks each.
- 3. Section B has 4 short answer type (SA2) questions of 3 marks each.
- 4. Section C has 4 long answer type questions (LA) of 4 marks each.
- 5. There is an **internal choice** in some of the questions.
- 6. Q14 is a **case-based problem** having 2 sub parts of 2 marks each.

SECTION - A			
1.	Find $\int \frac{\log x}{(1+\log x)^2} dx$	2	
	OR		
	Find $\int \frac{\sin 2x}{\sqrt{9-\cos^4 x}} dx$		
2.	Write the sum of the order and the degree of the following differential equation:	2	
	1		
	$\frac{d}{dx}\left(\frac{dy}{dx}\right) = 5$		
3.	If \hat{a} and \hat{b} are unit vectors, then prove that	2	
	$ \hat{a} + \hat{b} = 2\cos\frac{\theta}{2}$, where θ is the angle between them.		
4.	Find the direction cosines of the following line:	2	
	$\frac{3-x}{-1} = \frac{2y-1}{2} = \frac{z}{4}$		
5.	A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-	2	
	one without replacement.		
6.	Two cards are drawn at random from a pack of 52 cards one-by-one without	2	
	replacement. What is the probability of getting first card red and second		
	card Jack?		
<u>SECTION - B</u>			
7.	Find: $\int \frac{x+1}{(x^2+1)x} dx$	3	
8.	Find the general solution of the following differential equation:	3	
	$x\frac{dy}{dx} = y - xsin(\frac{y}{x})$		
	dx x OR		
	Find the particular solution of the following differential equation, given that		
	$y = 0$ when $x = \frac{\pi}{4}$:		
	$\frac{dy}{dx} + ycotx = \frac{2}{1 + sinx}$ If $\vec{a} \neq \vec{0}$, \vec{a} . $\vec{b} = \vec{a}$. \vec{c} , $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.		
9.	If $\vec{a} \neq \vec{0}$, $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$, then show that $\vec{b} = \vec{c}$.	3	

10.	Find the shortest distance between the following lines: $\vec{x} = (\hat{x} + \hat{y} - \hat{y}) + (\hat{x} + \hat{y} + \hat{y})$	3	
	$\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + s(2\hat{i} + \hat{j} + \hat{k})$ $\vec{r} = (\hat{i} + \hat{j} + 2\hat{k}) + t(4\hat{i} + 2\hat{j} + 2\hat{k})$		
	V = (l + j + 2k) + l(4l + 2j + 2k) OR		
	Find the vector and the cartesian equations of the plane containing the point $\hat{i} + 2\hat{j} - \hat{k}$ and parallel to the lines $\vec{r} = (\hat{i} + 2\hat{j} + 2\hat{k}) + s(2\hat{i} - 3\hat{j} + 2\hat{k})$ and $\vec{r} = (3\hat{i} + \hat{j} - 2\hat{k}) + t(\hat{i} - 3\hat{j} + \hat{k})$		
	<u>SECTION - C</u>		
11.	Evaluate: $\int_{-1}^{2} x^3 - 3x^2 + 2x dx$	4	
12.	Using integration, find the area of the region in the first quadrant enclosed by the line $x + y = 2$, the parabola $y^2 = x$ and the x-axis. OR	4	
	Using integration, find the area of the region $\{(x, y): 0 \le y \le \sqrt{3}x, x^2 + y^2 \le 4\}$		
13.	Find the foot of the perpendicular from the point $(1, 2, 0)$ upon the plane $x - 3y + 2z = 9$. Hence, find the distance of the point $(1, 2, 0)$ from the given plane.	4	
14.	CASE-BASED/DATA-BASED		
	Fig 1		
	Fig 1	1	
	An insurance company believes that people can be divided into two classes: those who		
	are accident prone and those who are not. The company's statistics show that an		
	accident-prone person will have an accident at sometime within a fixed one-year period		
	with probability 0.6, whereas this probability is 0.2 for a person who is not accident		
	prone. The company knows that 20 percent of the population is accident prone.		
	Based on the given information, answer the following questions.	-	
	(i)what is the probability that a new policyholder will have an accident within a year of purchasing a policy?	2	
	(ii) Suppose that a new policyholder has an accident within a year of purchasing a policy. What is the probability that he or she is accident prone?	2	
